II. Example 2: R-L DC Circuit

Physical characteristics of the circuit: 100 volt DC battery connected in series with a 2 henry inductor and a 6 ohm resistor; current flows when the open switch is closed.

Questions:

- [a] Describe in words how the current changes over time.
- [b] What is the current 1 second after the switch is closed?
- [c] At what time does the current equal 8 amps?
- [d] At what time does the current equal k amps, where k is a positive constant?

Solution of Circuit IVP:

By Kirchhoff's laws we have $E_L + E_R = EMF$ which, with $E_L = L \cdot I'(t)$ and $E_R = R \cdot I(t)$, translates into the following Initial Value Problem (for $t \geq 0$):

$$2I'(t) + 6I(t) = 100,$$
 $I(t) = 0$ at $t = 0$

We can solve for I using a method called *separation of variables*. First, we will divide through by 2, replace I(t) by I, and use the differential notation for derivatives:

$$\frac{dI}{dt} + 3I = 50$$

Solving for $\frac{dI}{dt}$ shows that this is not a simple integration problem because the derivative of I depends on both t and I

$$\frac{dI}{dt} = 50 - 3I\tag{*}$$

Outline of solution by separation of variables

Use algebra to rewrite (*) as

$$\frac{dI}{50 - 3I} = dt$$

$$-\frac{1}{3}\ln|50 - 3I| = t + C$$

which with the initial condition I(0) = 0 yields the circuit current

$$I(t) = \frac{50}{3} (1 - e^{-3t}), \quad t \ge 0$$

More details for all these steps may be found below, after the Answers.

Answers:

[a] Describe in words how the current changes over time.

The following graph shows how I(t) increases from 0 at t=0 toward an asymptotic limit 50/3 as t increases. This asymptotic limit is called the *steady-state* current.

[b] What is the current 1 second after the switch is closed?

$$I(1) = \frac{50}{3} (1 - e^{-3}) \approx 15.84$$

which agrees with the following graph.

ODEs and Electric Circuits

[c] At what time does the current equal 8 amps?

Solve

$$\frac{50}{3}\left(1 - e^{-3 \cdot t}\right) = 8$$

to get $t = -\frac{1}{3} \ln \left(\frac{13}{25} \right) \approx 0.22$, which agrees with the preceding graph.

[d] At what time does the current equal k amps, where k is a positive constant? Using the same steps as in the preceding part

$$t = -\frac{1}{3}\ln\left(1 - \frac{3k}{50}\right)$$

for any k < 50/3.

Details of solution by separation of variables

After multiplying both sides of the ODE

$$\frac{dI}{dt} = 50 - 3I\tag{*}$$

by dt, we get the ODE in differential form

$$dI = (50 - 3I) dt$$

Divide both sides by 50 - 3I in order to separate variables: put anything involving I on one side and anything involving t on the other side:

$$\frac{dI}{50 - 3I} = dt \tag{1}$$

Now we are allowed to integrate each side separately and still have equality. The right side of equation (1) is easy:

$$\int dt = t + C$$

where C is an arbitrary constant. The left side of equation (1) looks related to the integral $\int \frac{1}{x} dx$. So we use the substitution

$$x = 50 - 3I$$
to get
$$\frac{dx}{dI} = -3$$
or
$$dI = -\frac{1}{3}dx$$

Then in equation (1) we replace 50-3I with x and dI with $-\frac{1}{3}dx$ and integrate in order to get the left side to equal

$$\int \frac{1}{50 - 3I} dI = \int \frac{1}{x} \left(-\frac{1}{3} dx \right)$$
$$= -\frac{1}{3} \int \frac{1}{x} dx$$
$$= -\frac{1}{3} \ln|x| + C$$
$$= -\frac{1}{3} \ln|50 - 3I| + C$$

Hence equation (1), after both sides are integrated, becomes (collecting all arbitrary constants on the right hand side as a single arbitrary constant)

$$-\frac{1}{3}\ln|50 - 3I| = t + C \tag{2}$$

ODEs and Electric Circuits ______ 4 _____ II. Example 2: R-L DC Circuit

Since there is no current when the switch is thrown, we let I=0 when t=0 to solve for C

$$-\frac{1}{3}\ln|50 - 0| = 0 + C \Longrightarrow C = -\frac{1}{3}\ln 50$$

and so equation (2) becomes

$$-\frac{1}{3}\ln|50 - 3I| = -\frac{1}{3}\ln 50 + t$$

It is usually preferable to solve for the dependent variable, I in this case. To do that, we first multiply both sides of the last equation by -3 to get

$$\ln|50 - 3I| = \ln 50 - 3t$$

then take the exponential (inverse logarithm) of both sides

$$e^{\ln|50-3I|} = e^{\ln 50-3t} \tag{3}$$

and then use a property of exponentials

$$e^{a+b} = e^a \times e^b$$

with $a = \ln 50$ and b = -3t to get from equation (3)

$$|50 - 3I| = e^{\ln 50} \times e^{-3t}$$
$$= 50e^{-3t}$$

since $e^{\ln 50} = 50$. Now $|x| = c \Longrightarrow x = \pm c$ so we have

$$50 - 3I = \pm 50e^{-3t}$$

Since we know that I = 0 at t = 0, we determine the sign to be +, allowing us to solve for I by dividing both sides of the last equation by 3 and then isolating I on one side

$$I(t) = \frac{50}{3} (1 - e^{-3t}), \quad t \ge 0$$